Agenda

➢ Reliable Internet Transport Protocols
➢ Q&A
➢ Lucky Draw
Reliable Internet Transport Protocols

AVW Broadcast
Contents

➢ Why should we use Internet Distribution?

➢ Reliable Internet Transport Protocol Overview

➢ SRT/RIST/Zixi Working Principle

➢ Relative Products
Why should we use Internet Distribution?
Typical Broadcast Methods

• **Satellite Distribution**
 – DVB-S/S2/S2X
 – CAM/Smart Card based Encryption

• **Pros**
 – High availability, even remote locations
 – Bandwidth exceeding 80Mbps

• **Cons**
 – Putting stuff in space is expensive!
 – Can be effected by weather, sun spots etc.
Typical Broadcast Methods

• Fiber Distribution
 – Leased Fiber, Dark Fiber

• Pros
 – High reliability
 – Low Latency
 – Bandwidth to 100Gbps+

• Cons
 – High cost to deploy and/or lease
 – Only available if infrastructure is present
Distributing Content Over the Internet

- Broadband is easy to find!
 - Diversity in the market (cable, DSL, cellular)
 - Competition driving down costs, increasing bandwidth
- Consumer cable and wireless networks capable of 100Mbps+
- Higher compression = less bandwidth
Challenges of Delivery

• **Packet loss, Corruption or Out of Order**
 – Packet retransmission
 – Reordering

• **Jitter or Packet Pacing**
 – Input buffers
 – Output buffers

• **Latency**
 – Buffers increase latency
 – Congestion on regional or local networks
Reliable Internet Transport Protocols

Overview
What is reliable internet transport?

• Technologies used to transport live video and audio over the open internet
• Quickly growing method of transport in all tiers of broadcast
• "Household" names such as Zixi, LTN and VideoFlow

• Open source alternatives creating new opportunities
How is Internet Transport being used?

• Alternative to traditional transport methods
 – MPLS Networks
 – Satellite
 – Leased Fiber Links

• Backup to primary transport methods
 – Backup paths should be inexpensive

• Inexpensive transport of non-”must carry” services

• Emerging transport method for distribution
Use Cases

- Point-to-Point Contribution
- Low-cost distribution over Internet
- Backup to primary distribution link
- Collection
- Hub and spoke
- Many edge devices transmitting to central aggregation site over Internet
Major Players

- ZiXi Platform
 - Receive pay-per-use licensing
- Zixi Feeder/Receiver devices tested with Sencore MRD products

- LTN SmartCloud delivery service
 - Pay-per-use licensing
- LTN appliances tested with Sencore MRD products

- DVP (Digital Video Protection)
- VideoFlow Protector/Sentinel gateway products tested with Sencore MRD and Wellav products

- Caton R2TP streaming platform
 - R2TP on MRD4400/5800 is under development

- Secure Reliable Transport
 - Founded by Haivision
 - Sencore is a member of the SRT Alliance

- Reliable Internet Stream Transport
 - In progress by VSF activity group
 - Predicted draft by end of 2018
 - Sencore is a participant in the RIST activity group
SRT/RIST/Zixi

Working Principle
SRT Introduction

- **Secure Reliable Transport**
- Developed by Haivision and Wowza
- Announced as open source at NAB 2017
- SRT Alliance
 - Group of 100 vendors
SRT – How does it work?

• Bidirectional UDP data stream
 – One flow containing control info and data stream
• Control information used as negation and “keep alive”
• Data stream is SRT packaged transport stream
SRT UDP Stream Structure

- **Transport stream as RTP with FEC**
 - Uni-directional stream
 - Single IP Address with multiple ports
 - FEC data on +2 and +4 port

- **Transport Stream as SRT**
 - Bi-directional UDP stream
 - Control data contained in UDP header
 - Single IP address with single port
SRT Packet Recovery Method

• Burst transmission replaces packets
• Bandwidth Overhead enables burst transmission
Calculating Latency and Bandwidth

- Round Trip Time or RTT (ms)
- Packet Loss Rate (%)
 - Sustained Packet Loss
 - Burst Packet Loss

<table>
<thead>
<tr>
<th>Worst Case Loss Rate (%)</th>
<th>RTT Multiplier</th>
<th>Bandwidth Overhead (%)</th>
<th>Minimum SRT Latency (for RTT <= 20 ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 1</td>
<td>3</td>
<td>33</td>
<td>60</td>
</tr>
<tr>
<td><= 3</td>
<td>4</td>
<td>25</td>
<td>80</td>
</tr>
<tr>
<td><= 7</td>
<td>5</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td><= 10</td>
<td>6</td>
<td>17</td>
<td>120</td>
</tr>
</tbody>
</table>
Encryption over open internet

• SRT protocol natively supports AES encryption
 – AES-128 and AES-256 fixed key
• Encryption does not add to Bandwidth Overhead
• Encryption does add to stream processing
SRT and Firewalls

- **Network Address Translation (NAT)**
 - Translate external IP to internal IP

- **Rendezvous Mode for firewall tunneling**
 - Stateful firewalls “connection tracking”
 - UDP control data originating within firewall are passed
RIST Introduction

• **Rliable Internet Stream Transport**
 – Joint effort between industry vendors
 – Submitted to VSF as TR-06

• Built upon current SMPTE standards and IETF RFCs

• Intended to be backwards compatible
RIST – How does it work?

• Baseline Protocol is RTP
 – Media with existing RTP standards will use same header fields
 – SMPTE 2022-1/2 for transport streams
• Feedback/control messages use RTCP (IETF RFC 3550)
 – Keep alive and mechanism to recover from packet loss
RIST Stream Structure

• RTP packaged transport stream
 – Uni-directional stream
 • Unicast or multicast
 – SMPTE 2022-2

• Forward Error Correction
 – Port N+2 and N+4
 – SMPTE 2022-1

• RTCP
 – Packet retransmission request
 – Keep alive
 – Port N+1
 – RFC 3550
RTCP Function in RIST

• RIST Senders
 – Sender Report (SR) packets
 – Source Description (SDES) Packets with CNAME field

• RIST Receivers
 – Receiver Report (RR) packets
 – Source Description (SDES) packets with CNAME Field
 – NACK Packet
RIST and Firewalls

• Bidirectional RTCP data can tunnel firewalls
 – Stateful firewalls “connection tracking”
 – UDP control data originating within firewall are passed
• Firewall rules for RTP, FEC?
Zixi Introduction

• A proprietary reliable internet transport protocol
 – Developed by Zixi and exists for more than 10 years
 – Focus on perfecting the IP video delivery

• Establish an ecosystem with 100+ partners and OEMs

• High quality, low latency and reliable video delivery over IP
Zixi – How does it work?

• An application protocol over UDP for reliable internet transport
 – Point to point/multi-point transmission
 – Cloud-based deployment
 – ZEN Master control plane and software platform

• Transmission and Error Correction
 – Unicast, Protected Multicast, Zixi ABR, OTT ABR
 – SMPTE 2022-1 FEC, Zixi Congestion Aware FEC, Zixi ARQ

• Encryption and Latency
 – DTLS or AES encryption
 – Low latency HLS, User Defined Latency in Zixi Protocol
Zixi Enabled Network

• Broadcast Quality Video Delivery over IP (Securely, Low Latency, Any Distance)
• Zixi protocol embedded to Encoder, Decoder and Media Gateway
• High interoperable due to 100+ partners and OEMs
The Zixi Platform

- A flexible broadcast-quality IP video delivery platform
- Low predictable latency, superior reliability and no packet loss
- Deployed on cloud, server or hybrid with analytics function
Zixi and Firewalls

- Zixi stream can tunnel firewalls
 - NAT is used to translate external IP to internal IP address
 - Data and FEC stream can pass through the firewall
Relative Products
DMG 7000 – Software Media Gateway

• SRT/Zixi to MPEG/IP Gateway
 – Receive and Transmit SRT/Zixi over open internet
 – MPEG/IP <-> SRT/Zixi encap/de-encap
 – Single source to multiple destinations

• Flexible form factors
 – Small form factor for single channel
 – 1RU servers for up to 32 channels

• RIST support planned for 2019/2020
DMG7000 Part Numbers

Software Part Numbers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMG 7000</td>
<td>DMG 7000 Base Software License</td>
</tr>
<tr>
<td>DMG 70701</td>
<td>SRT Protocol License, per unit</td>
</tr>
<tr>
<td>DMG 70702</td>
<td>ZiXi Protocol License, per unit</td>
</tr>
<tr>
<td>DMG 70703</td>
<td>RIST Protocol License, per unit</td>
</tr>
<tr>
<td>DMG 70991</td>
<td>Gateway License</td>
</tr>
</tbody>
</table>

Hardware Part Numbers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMG 70010</td>
<td>DMG 70010 Mini Unit (Base Software, MPEG/IP, 1x Gateway License)</td>
</tr>
<tr>
<td>DMG 70020</td>
<td>DMG 70020 Field Unit (Base Software, MPEG/IP, 8x Gateway Licenses)</td>
</tr>
<tr>
<td>DMG 70030</td>
<td>DMG 70030 Headend Unit (Base Software, MPEG/IP, 32x Gateway Licenses)</td>
</tr>
</tbody>
</table>
MRD7000 H.264/HEVC 4K Decoder

- SRT to 4*3G SDI/12G SDI/HDMI2.0/SMPTE2110
 - Receive SRT over open internet
 - H.265/HEVC Decoding and SMPTE2110 Encapsulation
- Flexible and powerful
 - 1RU chassis for 1*UHD or 4*FHD
 - Scalable SW-based decoder
- RIST and ZiXi support planned for 2019/2020
MRD4400/5800 HD/UHD Receiver/Decoder

• R2TP to 3G-SDI/SDI/HDMI/CVBS Decoder
 – Receive SRT over open internet
 – HEVC, H.264, MPEG2 HD or SD video decoding

• Flexible and powerful
 – Support all common signal source (DVB-C/T/T2/S/S2/8VSB/IP)
 – Support 3G-SDI, 4:2:2 and up to 8 audio channel output (MRD5800)
 – Support HD/SD SDI, 4:2:0 and up to 4 audio channel output (MRD4400)
 – Fully complement of ancillary data in ANC and VBI
THANK YOU

sales@avw.com.au www.avw.com.au 02 8213 0200